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Abstract. The formalism of exact 1D quantization is reviewed in detail and applied to the spectral
study of three concrete Schrödinger Hamiltonians [−d2/dq2 + V (q)]± on the half-line {q > 0},
with a Dirichlet (−) or Neumann (+) condition at q = 0. Emphasis is put on the analytical
investigation of the spectral determinants and spectral zeta-functions with respect to singular
perturbation parameters. We first discuss the homogeneous potential V (q) = qN as N → +∞
versus its (solvable) N = ∞ limit (an infinite square well): useful distinctions are established
between regular and singular behaviours of spectral quantities; various identities among the square-
well spectral functions are unravelled as limits of finite-N properties. The second model is the
quartic anharmonic oscillator: the zero-energy spectral determinants det(−d2/dq2 + q4 + vq2)±
are explicitly analysed in detail, revealing many special values, algebraic identities between Taylor
coefficients and functional equations of a quartic type coupled to asymptotic v →∞ properties of
Airy type. The third study addresses the potentials V (q) = qN + vqN/2−1 of even degree: their
zero-energy spectral determinants prove computable in closed form, and the generalized eigenvalue
problems with v as spectral variable admit exact quantization formulae which are perfect extensions
of the harmonic oscillator case (corresponding to N = 2); these results partly reflect the presence
of quasi-exactly solvable potentials in the family above.

Exact quantization, or exact WKB analysis, supplies new tools for the analytical study of the
1D Schrödinger equation, now including arbitrary polynomial potentials. Here we initiate
applications of such an exact method to miscellaneous concrete problems and models of
analytical interest, emphasizing exact and asymptotic relations for the spectral determinants
and related spectral zeta-functions.

We have chosen three rather different quantum potentials to illustrate a variety of situations.
These have some basic common features (besides their required 1D and polynomial nature):
they are rather simple, with a minimal number of parameters, to remain concretely manageable;
one crucial parameter (discrete or continuous) governs the transition to a singular limit, creating
an interesting dynamical and analytical situation; some uniform principles for tackling those
problems can be issued at the most general level.

In contrast to earlier studies concerned with individual eigenvalue or eigenfunction
behaviour, we seek the limiting properties of spectral functions, which are symmetric functions
of all the eigenvalues at once. We take a semi-rigorous approach, in which we argue a global
operational scheme without claiming absolute completeness in every detail.

The paper is organized as follows.
The introduction, section 1, gives a detailed survey of the exact tools to be used here, while

an appendix collects all the results concerning homogeneous potentials. This is done partly
for convenience, given the lack of comprehensive reviews for results that are very scattered in
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time and place of publication, and also to clarify some parts of our most recent developments
where localized inconsistencies went undetected.

Then, section 2 (exercise 1) considers the family of homogeneous potentials V (q) = |q|N
as the degree N tends to +∞. This is a most singular problem, for which many explicit
results are however available beforehand, and the limiting problem (an infinite square well)
is exactly solved by elementary means. We therefore mainly propose and test some general
principles of investigation, rather than claim truly new results. In particular, we suggest criteria
for sorting out regular versus singular types of limiting behaviour in spectral zeta-functions
and determinants. Still, we identify several possibly unnoticed properties and formulae in the
N = ∞ limit which arise as regular limits of nontrivial finite-N properties.

Section 3 (exercise 2) deals with the quartic anharmonic oscillator familyV (q) = q4+vq2,
which is the most common model for singular perturbation theory (the free harmonic oscillator
emerges in the v → +∞ limit). We single out a pair of one-parameter spectral functions
for their remarkably numerous and simple explicit properties: the zero-energy determinants

Qi±(v) def= det(−d2/dq2 +q4 +vq2)± (+ corresponds to the even-state sector and− to the odd-
state sector). We present a simple WKB technique allowing us to express asymptotic relations
between v-dependent determinants such as det(−d2/dq2+q4+vq2)± and det(−d2/dq2+vq2)±

when v →∞. Then, practically all the analytical results available for the homogeneous quartic
case (V (q) = q4) have counterparts for the functions Qi± (and their associated spectral zeta
functions), while the plots and asymptotic properties of Qi± evoke the Airy functions. Several
special values are computable and are tabulated against the analogous results for the Airy
functions and the quartic determinants det(−d2/dq2 + q4 + λ)±.

The final section 4 (exercise 3) gives a complete treatment of the similar determinants for a
different class of binomial potentials, V (q) = qN +vqN/2−1 (for N even). Here the formalism
yields fully closed forms for the zero-energy spectral determinants: equation (120) for
det[−d2/dq2 + V (|q|)]± in terms of gamma functions (plus nontrivial exponential prefactors)
and, whenN is a multiple of 4, the still simpler equation (123) for the zero-energy determinant
of the potential V (q) itself on the whole real line; exact quantization formulae follow for the
corresponding generalized spectra (in the v variable: equations (107) and (124) respectively).
A broad generalization of the familiar harmonic-oscillator exact results is thus obtained; for
N ≡ 2 [mod 4], this seems to describe a zero-energy cross-section of the formalism for
quasi-exactly solvable models.

Although all three problems rely on the same background formalism, they can be
approached fairly independently from one another. Accordingly, there are no global
conclusions but each section carries its own concluding remarks.

1. Introduction

1.1. General results on spectral functions [1, 2]

Here, an admissible spectrum is a purely discrete countable set {Ek}k=0,1,2,... with Ek > 0,
Ek ↑ +∞, such that its partition function

θ(t)
def=

∞∑
k=0

e−tEk Re (t) > 0 (1)

can be asymptotically expanded in increasing (real) powers {tρ} for t ↓ 0:

θ(t) ∼
∑
ρ

cρt
ρ (t ↓ 0) with µ

def= −min {ρ} > 0 (the ‘growth order’). (2)
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(In summations etc Latin indices will systematically mean integers, and Greek indices mean
more general real indices, namely real-valued functions over the natural integers, strictly↑ +∞
or ↓ −∞.)

1.1.1. Spectral zeta-functions [2–4]. Equation (2) implies that the ‘Hurwitz’, respectively
‘plain’ spectral zeta-functions

Z(s, λ)
def=
∑
k

(Ek + λ)−s (| arg(λ + E0)| < π − δ) respectively Z(s)
def= Z(s, 0) (3)

converge for Re (s) > µ, that Z(s) has a meromorphic continuation to all complex s, with [5]

polar set: {−ρ} residue formula: lim
s→−ρ(s + ρ)Z(s) = cρ/�(−ρ) (4)

‘trace identities’: for m ∈ N Z(−m) = (−1)mm! cm (cm
def= 0 for m /∈ {ρ}) (5)

and similarly for Z(s, λ), just by substituting e−λt θ(t) for θ(t); for general λ, the leading trace
identity (especially useful for equation (15) below) is then polynomial, being

Z(0, λ) =
∑

0�n�µ

c−n
(−λ)n
n!

≡ Z(0) +
∑

1�n�µ

Ress=nZ(s)
(−λ)n
n

. (6)

1.1.2. Spectral determinants [1]. Since Z(s, λ) is regular at s = 0, a spectral determinant
can be defined by zeta-regularization, as

D(λ) ≡ det(Ĥ + λ)
def= exp[−∂sZ(s, λ)]s=0 (7)

(Ĥ being a linear operator of spectrum {Ek}) and it is an entire function of order µ with {−Ek}
as its set of zeros. Moreover, amidst all such functions, D(λ) can be precisely picked out in at
least two ways.

• On one hand, equation (2) implies a canonical semiclassical behaviour for D(λ):

− logD(λ) ∼
∑
ρ

cρ�ρ(λ) for λ→ +∞ (8a)

with

�ρ(λ)
def= ∂s

[
�(s + ρ)

�(s)
λ−(s+ρ)

]
s=0

(8b)

that is,

�ρ(λ) =



�(ρ)λ−ρ if −ρ /∈ N

(−(−λ)m/m!)

(
log λ−

m∑
r=1

1/r

)
if −ρ = m ∈ N

(8c)

are the only terms allowed; no other type, including additive constants (∝ λ0), can enter
this expansion.

• Independently, D(λ) is also fully specified by expansions around λ = 0: firstly, in
reference to the Fredholm determinant �(λ) (built as a Weierstrass infinite product),

D(λ) ≡ exp

[
− Z′(0)−

∑
1�n�µ

Z̃(n)

n
(−λ)n

]
�(λ) (9)

where

�(λ)
def=

∞∏
k=0

(
1 +

λ

Ek

)
exp

[ ∑
1�n�µ

(−λ)n
nEn

k

]
for all λ (10)
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and

Z̃(n) = Z(n) if Z(s) is regular at n (as when n > µ) (11)

Z̃(1) = lim
s→1

(
Z(s)− c−1

s − 1

)
(=Z(1) or its finite part) (12)

(the general formula for Z̃(n) on a pole is more contrived and required only whenµ � 2 [1,
equation (4.12)], whereas µ � 3

2 in this work). Finally, by way of consequence, the
determinants are also characterized by these Taylor series (converging for |λ| < E0),

− logD(λ) = Z′(0) +
∞∑
n=1

Z̃(n)

n
(−λ)n

− log�(λ) =
∑
n>µ

Z(n)

n
(−λ)n.

(13)

The simplest case is µ < 1: then

�(λ) =
∞∏
k=0

(
1 +

λ

Ek

)
= exp

[
−

∞∑
n=1

Z(n)

n
(−λ)n

]
D(λ) ≡ e−Z

′(0)�(λ). (14)

Two other properties are worth mentioning:

• if a spectrum {Ek} is dilated to {αEk} (α > 0), the spectral functions are rescaled to

Z(s, λ|α) ≡ α−sZ(s, λ/α) �⇒ D(λ|α) ≡ αZ(0,λ/α)D(λ/α) (15)

(a behaviour hence mainly governed by the leading trace identity, equation (6));
• finally, all these results extend to analogous complex spectra [6].

1.2. 1D Schrödinger operators with polynomial potentials

We subsequently specialize to 1D Schrödinger equations involving a polynomial potential
V (q) (adjusted to V (0) = 0) [7, 8]

(−d2/dq2 + [V (q) + λ])ψ = 0 V (q) = +qN + [lower-order terms]. (16)

We call Ĥ + (respectively Ĥ−) the Schrödinger operator on the half-line {q > 0} with the
Neumann (respectively Dirichlet) boundary condition at q = 0, and Ĥ the Schrödinger
operator on the whole line with the potential V (|q|), whose spectrum we denote by {Ek}.
Then {Ek}k even (respectively {Ek}k odd) is the spectrum of Ĥ + (respectively Ĥ−); each one is
an admissible spectrum in the previous sense, with

growth order µ = 1

2
+

1

N
(µ < 1 generically, i.e. for N > 2) (17)

exponents {ρ} = {−µ + j/N}j=0,1,2,.... (18)

Their spectral functions Z+,D+ (respectively Z−,D−) are our basic concern, and have
properties as above (with exceptions in the singular case N = 2). However, a few results
take a neater or a more regular form upon recombined functions instead,

Z
def= Z+ + Z− D

def= D+D− (spectral functions of Ĥ ) (19)

ZP def= Z+ − Z− DP def= D+/D− (‘skew’ spectral functions). (20)
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1.2.1. Classical ‘spectral’ functions [9]. The quantum spectral functions of the
problem (16) admit natural classical counterparts with parallel properties. The Weyl–Wigner
correspondence, for instance, associates the following classical partition function with the
quantum one of equation (1):

θcl(t) =
∫

R2

dp dq

2π
e−[p2+V (|q|)]t ≡ 1√

πt

∫ +∞

0
e−V (q)t dq (21)

with an expansion coinciding with equation (2) as long as ρ � 0. The same Mellin transforms
as from the quantum θ(t) to Z(s, λ) then yield

Zcl(s, λ)
def= 1

�(s)

∫ +∞

0
θcl(t)e

−λt t s−1 dt = �(s − 1
2 )

�(s)
√
π
I0(s, λ) (22)

where

Iq(s, λ)
def=
∫ +∞

q

(V (q ′) + λ)−s+1/2 dq ′ (Re (s) > µ) (23)

and

Dcl(λ)
def= exp[−∂sZcl(s, λ)]s=0 (24)

with properties induced by equation (2) similar to the quantum case (butDcl(λ) is not an entire
function: branch cuts replace the chains of discrete zeros of D(λ)).

The meromorphic continuation of Iq(s, λ) is thus important at s = 0. If (for λ > − inf V
initially) we compute the expansion

(V (q) + λ)−s+1/2 ∼
∑
σ

βσ (s)q
σ−Ns for q → +∞

(
σ = N

2
,
N

2
− 1, . . .

)
(25)

(the βσ of course also depend on λ and on the potential), then

Iq(s, λ) ∼ −
∑
σ

βσ (s)
qσ+1−Ns

σ + 1−Ns
(q → +∞) (26)

hence it satisfies

lim
s→0

sIq(s, λ) = β−1(0)/N = −Z(0, λ)/2. (27)

β−1(s) is actually independent of λ except for N = 2; the latter value for the residue (27)
comes directly from equation (22), making another explicit statement of the trace identity (6).

We denote here

Iq(λ) def= lim
s→0

{
Iq(s, λ)− β−1(0)

Ns

}
(the finite part of Iq(s, λ) at s = 0). (28)

Now, some of our earlier statements revolving around this quantity [9, 10] require corrections
in the most general setting β−1(s) �≡ 0. Finite parts are also to be extracted: first on the
expansion (26), giving

Iq(λ) ∼ −
∑
σ �=−1

βσ (0)
qσ+1

σ + 1
− β−1(0) log q +

∂sβ−1(0)

N
(q → +∞) (29)

then on the definition (22), (24), giving

1

2
logDcl(λ)

def= −1

2
∂sZcl(s, λ)s=0 = I0(λ) + 2(1− log 2)

β−1(0)

N
. (30)
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Next, the finite part I0(λ) of
∫ +∞

0 (V (q) + λ)−s+1/2 dq at s = 0 is a candidate to define a
‘symbolic’ value for the divergent integral

∫ +∞
0 'λ(q) dq, where

'λ(q)
def= (V (q) + λ)1/2 the classical (forbidden-region) momentum. (31)

However, such an assignment being conventional, we much prefer the ‘renormalization’ given
by equation (30), which only adds an explicit constant to the finite part. So (more generally)
we pose the suggestive notation∫ +∞

q

'λ(q
′) dq ′ def= 1

2
logDcl(λ)−

∫ q

0
'λ(q

′) dq ′ ≡ Iq(λ) + 2(1− log 2)
β−1(0)

N
. (32)

A big advantage of the specification (32) will be that its λ→ +∞ expansion has the canonical
form (8) (essentially because logDcl behaves similarly to its quantum counterpart logD in this
respect, and

∫ q
0 'λ(q

′) dq ′ = O(
√
λ) + o(1) is also manifestly canonical).

Thanks to equation (29), the prescription (32) is also directly characterized by its large-q
asymptotic behaviour, as∫ +∞

q

'λ(q
′) dq ′ = −Sλ(q)− β−1(0) log q + C + o(1) (q → +∞) (33)

where

Sλ(q)
def=

∑
{σ>−1}

βσ (0)
qσ+1

σ + 1
C def= 1

N

(
−2 log 2 β−1(0) + ∂s

[
β−1(s)

1− 2s

]
s=0

)
.

Classical analogues will also arise for D+ and D− separately (equation (46) below).

1.2.2. Special features of 1D Schrödinger determinants [9, 10]. The quantum determinants
D± for equation (16) can be specified in two additional ways.

• The spectrum of either Ĥ + or Ĥ− obeys a semiclassical (high-energy Bohr–Sommerfeld)
quantization condition of the form∑

ρ

b±−ρE
−ρ
k ∼ k + 1

2 for even
odd k → +∞ (34)

which implies Euler–Maclaurin continuation formulae for the zeta-functions; e.g. down
to Re (s) � 0,

Z±(s) = lim
K→+∞

{∑
k<K

E−s
k +

1

2
E−s
K − 1

2

∑
{ρ<0}

ρ b±−ρ
s + ρ

E
−s−ρ
K

}
for even

odd k,K.

(35)

The resulting residues are compatible with equation (4) provided

b±−ρ
2

≡ c±ρ
�(1− ρ)

(ρ �= 0)
b±0
2
± 1

4
≡ c±0 ≡ Z±(0) (36)

(the latter specifies the s = 0 trace identities); here, moreover,

b+
−ρ ≡ b−−ρ for all ρ � 0 �⇒ Z(0) = b±0 ZP(0) = 1

2 (37)

then the same trace identity follows for all Z(0, λ) and ZP(0, λ) by equation (6), except
in the case N = 2 (equation (71) below).
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By the same token, D±(λ) become directly specifiable as functionals of the spectrum: in
the simplest case µ < 1, i.e. N > 2,

logD±(λ) = lim
K→+∞

{∑
k<K

log(Ek + λ) + 1
2 log(EK + λ)

−1

2

∑
{ρ<0}

b±−ρE
−ρ
K

(
logEK +

1

ρ

)}
for k,K even

odd (38)

(the expansion coefficients b±−ρ being themselves functions of the spectrum {Ek}).
• D±(λ) are also related to an exact solution ψλ(q) of equation (16) defined by a particular

WKB normalization,

ψλ(q) ∼ 'λ(q)
−1/2e

∫ +∞
q

'λ(q
′) dq ′ for 'λ(q)→ +∞ (39)

where 'λ(q) is the classical momentum function (31), and the divergent integral∫ +∞
q

'λ(q
′) dq ′ is specifically ‘renormalized’ through equation (32); however,

equation (33) also makes ψλ(q) directly specified as the (unique) solution of the
Schrödinger equation (16) that decays for q → +∞ with the precise behaviour

ψλ(q) ∼ eCq−N/4−β−1(0)e−Sλ(q)(≡ eCqNZ
−(0,λ)e−Sλ(q)) q → +∞ (40)

(the latter form comes from equations (27) and (37)). We remark that, in parallel to
equations (39) and (40),

−ψ ′
λ(q) ∼ 'λ(q)

+1/2e
∫ +∞
q

'λ(q
′) dq ′ for 'λ(q)→ +∞ (41)

( ∼ eCq+N/4−β−1(0)e−Sλ(q) = eCqNZ
+(0,λ)e−Sλ(q) for q → +∞).

We refer to ψλ(q) as the ‘canonical recessive’ solution. (It is proportional to the
‘subdominant’ solution of [7, Chapter 2], but only equal to it if β−1(s) ≡ 0. The
current normalization also differs from [11], and from [9, 10]—where it suffers localized
inconsistencies. The discrepancies, which for N > 2 involve λ-independent factors only,
ultimately cancel out in all results involving only spectral determinants.)

The extension of ψλ(q) to the whole real line, as a solution of equation (16) with the
potential V (|q|), is shown by integrations to identically satisfy [11, appendices A and D]

D(λ) ≡ CWλ DP(λ) ≡ CP[−ψ ′
λ(0)/ψλ(0)] (42)

Wλ
def= Wronskian{ψλ(−q), ψλ(q)} ≡ −2ψλ(0)ψ

′
λ(0) (43)

for some constants C, CP; to identify these, we test a characteristic property of the
spectral determinants: the canonical large-λ asymptotics (equation (8)) of their logarithms
down to constants included; as regards the right-hand sides in equation (42), the WKB
formulae (39), (41) (good for large λ) supply these asymptotic forms,

Wλ/2 ∼ e2
∫ +∞

0 'λ(q) dq ≡ Dcl(λ) − ψ ′
λ(0)/ψλ(0) ∼ 'λ(0) (λ→ +∞) (44)

both of which have canonical (λ→ +∞) logarithms (Dcl(λ) by analogy withD(λ), and'λ(0)
by inspection); hence, necessarily,

D(λ) ≡ Wλ/2 ≡ −ψλ(0)ψ
′
λ(0) DP(λ) ≡ −ψ ′

λ(0)/ψλ(0). (45)

Incidentally, the second equation (44) then naturally specifies a ‘classical skew determinant’,

DP
cl(λ)

def= 'λ(0), from which classical analogues of D±(λ) also follow as

D±
cl (λ)

def= 'λ(0)
±1/2e

∫ +∞
0 'λ(q) dq . (46)
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The main conclusion however concerns the quantum spectral determinantsD± themselves:
upon a straightforward simplification of equation (45), they are expressed in terms of ψλ(q)

by the fundamental identities

D−(λ) ≡ ψλ(0) D+(λ) ≡ −ψ ′
λ(0) (47)

(also valid for a rescaled potential, i.e. V (q) = vqN + · · ·).

1.2.3. The main functional relation [9, 10]. Jointly with the original problem (16), its set of
‘conjugate’ equations is defined by means of complex rotations, as [7, Chapter 2]

V [,](q)
def= e−i,ϕV (e−i,ϕ/2q) λ[,] def= e−i,ϕλ ϕ

def= 4π

N + 2
(48)

where , = 0, 1, . . . , L− 1 [mod L] labels the distinct conjugates, of total number

L = N + 2 in general L = N

2
+ 1 for even polynomial potentials. (49)

The main result to be used throughout is the Wronskian identity, which states a bilinear
functional relation between the spectral determinants D±(λ) and those of the first conjugate
equation, namely D[1]±(e−iϕλ):

e+iϕ/4D[1]+(e−iϕλ)D[0]−(λ)− e−iϕ/4D[0]+(λ)D[1]−(e−iϕλ) ≡ 2ieiϕβ−1(0)/2. (50)

It entails an exact quantization formula for the eigenvalues Ek ,

2

π
argD[1]±(−e−iϕE)E=Ek

− ϕ

π
β−1(0) = k +

1

2
± N − 2

2(N + 2)
for k = 0,2,4,...

1,3,5,...
(51)

i.e. this condition determines the spectrum {Ek} exactly in terms of the spectrum {E[1]
k } of the

first conjugate potential V [1], (of which the left-hand side D[1]±(−e−iϕE) are functionals).
(Equation (51) together with all its conjugates appear to form a determined system for the
resolution of all the spectra {E[,]

k } at once.)
Here we will often invoke the specific results relating to the homogeneous potentials

ĤN
def= − d2

dq2
+ qN q ∈ [0,+∞) N � 1 integer. (52)

The corresponding formulae are collated in greater detail separately in the appendix, and also
in table 1 below for N = 1, 4.

1.3. Statement of the problem

The previous exact analysis of section 1.2 is controlled in an essential manner by the degree
N of the potential, quite sensibly since qN defines the most singular interaction term. Still,
there are interesting transitional situations where this parameter N can diverge or behave
discontinuously while the quantum problem itself has a well defined limit (example: the term
qN is multiplied by a coupling constant g → 0). Earlier studies of such problems show those
limits to be very singular, and nonuniform over the energy range. An unexplored challenge
is then to control the limiting behaviour of spectral functions, which are symmetric functions
involving all eigenvalues simultaneously. The earlier analyses, which essentially work at fixed
N , need further development to handle such nonuniform regimes.

Here we will begin to gather some insight about this issue by examining three model
problems at varying depths.
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2. Exercise 1. Infinite square well as N → +∞ limit

The infinite square-well potential over the interval [−1,+1] can be realized as the N → +∞
limit of the homogeneous potential V (q) ≡ |q|N . The solutions of the Schrödinger equation
with this potential indeed approach those of the infinite square well, but the limiting behaviours
are interestingly singular, and nonuniform with respect to the quantum number k [12].

2.1. The N = +∞ problem

The limiting Schrödinger operator Ĥ∞ is given by V (q) ≡ 0 in [−1,+1] with Dirichlet
boundary conditions at q = ±1. At infinite N , the spectrum of |q|N becomes explicit again,
{Ek = (k + 1)2π2/4}, of growth order µ∞ = 1

2 . As with finite N , the operator Ĥ∞ splits into

Ĥ +
∞ (over the even eigenfunctions, labelled by even k) and Ĥ−

∞ (over the odd eigenfunctions,
labelled by odd k).

Here the immediately explicit spectral functions are the Fredholm determinants �± of
equation (14) (they reduce to standard Weierstrass products),

�+
∞(λ) = cos

√−λ �−
∞(λ) =

sin
√−λ√−λ

�⇒ �∞(λ) = sin 2
√−λ

2
√−λ

(53)

and the plain spectral zeta-functions (related to Riemann’s zeta-function ζ(s)),

Z+
∞(s) =

22s − 1

π2s
ζ(2s) Z−

∞(s) =
1

π2s
ζ(2s)

�⇒ Z∞(s) =
(

2

π

)2s

ζ(2s).
(54)

The latter formulae imply the explicit computability of Z±
∞(s) at all integers s ∈ Z, e.g.

Z+
∞(0) = 0 Z−

∞(0) = − 1
2

�⇒ Z∞(0) = − 1
2

(55)

and ultimately that of the spectral determinants themselves (even though these will not serve
here) through D±

∞(λ) = exp[−(Z±
∞)

′(0)]�±
∞(λ), using

exp[−(Z±
∞)

′(0)] ≡ D±
∞(0) = 2 �⇒ D∞(0) = 4. (56)

2.2. The transitional behaviour problem

Regarding the behaviour of the spectral functions, a first task is to seek conditions ensuring
the regular behaviour of a quantity (meaning that it has a finite limit, and this is the correct
value for the limiting problem). For the other (singular or pathological) quantities then comes
the additional task of describing their precise behaviours.

A fundamental quantity in these problems is the growth order µ. Here, the limiting
(square-well) value µ∞ = 1

2 agrees with the limit of µN (= 1
2 + 1

N
by equation (17)); hence µ

behaves regularly (as opposed to the later examples).
As a crude dividing line between (generic) singular and regular behaviours, we expect

that essentially those quantities which converge both for finite N and in the limiting problem
should be regular, in particular

Z±
N(s, λ)→ Z±

∞(s, λ) iff Re (s) > µ∞. (57)
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Singular behaviour should then set in at Re (s) = µ∞ and, plausibly, become worse as
Re (s) decreases further. This purely qualitative argument cannot, however, predict the precise
behaviour of any singular quantity.

Fortunately, quantitative statements are made easier here by a set of explicit results for
the finite-N problems (cf appendix A.1) and their counterparts for N = +∞ (section 2.1
above). These data indeed behave consistently with the prediction (57) taken with µ∞ = 1

2 .
As examples of regular (s > µ∞) behaviours, Z±

N(1) → Z±
∞(1) = 1/2

1/6 by equation (140),
and likewise for the higher-order sum rules involving s = 2, 3, . . . (section 2.5 below). As
opposite examples (involving s < µ∞): ZN(0) ≡ 0 for all N whereas Z∞(0) = − 1

2 by
equations (55), (128); and worse, (136) implies

exp[−(Z±
N)

′(s = 0)] = D±
N(λ = 0) ∼ (N/π)1/2 →∞ (58)

even though D±
∞(0) have finite values, perfectly defined by equation (56), in the N = +∞

problem! (All this shows how carefully such transitional problems must be handled. The same
formulae show the skew spectral functions (20) to behave slightly better: e.g. ZP

N(0) ≡ 1
2 =

ZP
∞(0), D

P
N(0)→ 1 = DP

∞(0).)
We then basically expect

�±
N(λ)→ �±

∞(λ) but D±
N(λ) diverge, (59)

this divergence being confined here to the factor exp[−Z′
N(0)] = DN(0) alone, because

µ∞ < 1 and the Fredholm determinants can be expressed using s = 1, 2, . . . only as in
equation (14). (The Fredholm determinants �(λ) should behave regularly in general, since
they are designed by retaining only regular values Z(s) (at integers s) in their Taylor series
(cf equation (13)); this has to be qualified only if µ reaches (or jumps across) an integer in the
limit, as in the example of section 3.)

2.3. The main functional relation

We now study the N → +∞ limit of the functional relation (50) specialized to homogeneous
potentials |q|N , as stated in equation (130). By the preceding arguments, this functional
relation should be well behaved as N → +∞ only once it has been transcribed for Fredholm
determinants (using equations (14), (132)):

e+iϕ/4�+
N(e

−iϕλ)�−
N(λ)− e−iϕ/4�+

N(λ)�
−
N(e

−iϕλ) ≡ 2i sin ϕ/4. (60)

In the latter formula, holding for all ϕ = 4π/(N +2), the expansions of both sides in powers of
ϕ → 0 should then be identified order by order. Equation (60) having the form of a ‘quantum
Wronskian’ identity for finite ϕ [13,14], it is not surprising that the identification to the leading
order O(ϕ) discloses a ‘classical’ Wronskian structure:

�+

(
λ

d

dλ
�−

)
−
(
λ

d

dλ
�+

)
�− ≡ 1

2
(1−�+�−). (61)

However, we know neither how to interpret the right-hand side, nor how to solve this functional
relation directly (and identification at the next order in ϕ ∝ 1/N within equation (60) does
not appear to yield any new information either): this constitutes an interesting open problem,
since the finite-N equation admits constructive solutions by an exact quantization method
using equation (133), a method which, however, seems totally singular in the N → +∞ limit.
At the same time, the Fredholm determinants of the infinite square well are known, given by
equation (53); they explicitly verify (61), and this provides a positive test of regular N → +∞
behaviour for the main functional relation in the form (60).



Exercises in exact quantization 7433

2.4. The N = ∞ coboundary and cocycle identities

For the homogeneous finite-N problem, a closed functional equation for the complete
determinant D(λ) is supplied in the appendix as ‘the cocycle identity’ (134), a sum of
L = O(N) terms. Its naive N → +∞ limit will be an integral relation for D(λ), further
reducible by the residue calculus. It is however simpler to work out theN → +∞ limit directly
upon the (logarithm of the) underlying ‘coboundary identity’ (131) equivalent to equation (60):
this limit is manifestly equivalent to equation (61) and has the (additive) coboundary form

−2λ
d

dλ
log�P(λ) ≡ 1

�(λ)
− 1. (62)

�P being meromorphic and � entire, the main solvability condition for equation (62) is that
the residues at the poles of 1/�must match the explicit residues of the left-hand side, resulting
in a curious constraint upon � alone at its zeros,

−2

[
λ

d

dλ
�(λ)

]
λ=−Ek

= (−1)k for all k ∈ N (63)

which stands as the N = ∞ counterpart for the cocycle identity (134). It is verified by �∞
but, as with equation (61) before, we have no idea about other possible solutions.

2.5. The N = ∞ sum rules

The Taylor series of both sides of equation (62) can be expressed with the help of (14), giving

2
∞∑
n=1

ZP(n)(−λ)n ≡ exp

[ ∞∑
m=1

Z(m)

m
(−λ)m

]
− 1 ≡

∞∑
r=1

1

r!

[ ∞∑
m=1

Z(m)

m
(−λ)m

]r
. (64)

As in the finite-N case (equation (141)), this acts as a generating identity: the identification
of each power λn in equation (64) yields a sum rule of order n, which here expresses the
combination 2ZP(n)− Z(n)/n in terms of the lower Z(m), as

2ZP(1)− Z(1) = 0 2ZP(2)− Z(2)/2 = Z(1)2/2 etc. (65)

The regular behaviour of equation (60) implies that these sum rules too must be the limits of
their finite-N counterparts (142) and also be verified by Z±

∞(s). (Due to the special form (54)
of Z±

∞(s), these rules amount to equating each Bernoulli number B2n to a certain polynomial
in its predecessors.)

In conclusion, this case provides a testing ground for ideas and methods applicable to
transitional regimes; however, it has not yet yielded any new results about the underlying
spectral problems themselves. Still, we have identified several novel structures in the N = ∞
problem as imprints of nontrivial finite-N features in theN →∞ limit. It remains to effectively
handle the finite-N problem as a regular deformation of this N = ∞ case, but this would
probably require answering the various questions we left open.

3. Exercise 2: Anharmonic perturbation theory as N = 2 limit

We now study the approach towards the other singular limit of the formalism,N = 2. It cannot
be realized through homogeneous polynomials, but a transition from N = 4 to 2 precisely
underlies the well known perturbation theory for the anharmonic potentials [15–18]

Ug(q) = q2 + gq4 (g → 0+) or equivalently Vv(q) = q4 + vq2 (v → +∞) (66)

given the basic unitary equivalence between the two operators

Ĥ
def= −d2/dq2 + Vv and

√
v(−d2/dq2 + Ug) with g ≡ v−3/2. (67)
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We denote the v-dependent spectral functions of Ĥ± (+: even, −: odd) as

Z±(s, λ; v) Z±(s; v) def= Z±(s, 0; v) D±(λ; v). (68)

The poles of these zeta-functions lie at s = 3/4, 1/4,−1/4, . . . ; moreover, by a
straightforward computation of equation (25), β−1(s) ≡ 0 for an even quartic potential; hence
(according to equation (27)) the leading trace identities are v-independent, as

Z(0, λ; v) ≡ 0 ZP(0, λ; v) ≡ 1/2 for all finite v. (69)

3.1. The transition v →∞
This transition is now discontinuous: N retains the fixed value 4 for all finite v while it has
the (more singular) value N = 2 at g = 0. All related parameters are then singular, especially
now the order µ ≡ 3

4 for all finite v, versus µ∞ = 1.

Each eigenvalue of Ĥ satisfies

Ek ∼
√
v(2k + 1) v → +∞ (70)

but not uniformly in k [17], hence it is another matter to find the behaviour of the corresponding
spectral determinants D±(λ; v) themselves, as entire functions of λ and v.

Following equation (57) again, we now expectZ±(s, λ; v) to be well behaved as v → +∞
iff s > µ∞ = 1. For instance, the s = 0 trace identity (69) behaves singularly: for the limiting
potential Ug=0(q) = q2, equation (159) gives

Z(0, λ) ≡ −λ/2 (but still, ZP(0, λ) ≡ 1
2 ). (71)

According to equation (13), (Z±)′(0, λ; v) and D±(λ; v) should be singular (as previously),
but now so should Z±(1, λ; v) and the resolvent trace ∂λ logD±(λ; v) (also involving s = 1);
thereafter, higher derivatives (∂λ)n logD±(λ; v) should behave regularly (as they only involve
s = n, n + 1, . . .). Understanding the v → +∞ behaviour of D±(λ; v) then just requires the
control of two (pairs of) functions of v alone, (Z±)′(0; v)—or equivalently D±(0; v)—and
Z±(1; v).

From now on we will exclusively deal with D±(0; v), a problem which entirely resides
in the {λ = 0} plane. It is technically simpler because the anomaly (71) present in (and only
in) the limiting problem U0(q) = q2 vanishes at λ = 0. Moreover, these restricted spectral
functions D±(0; v) will display many explicit properties, making them intriguingly similar
to spectral determinants of homogeneous potentials. The analysis of the complete spectral
determinant D±(λ; v) (including the coefficient Z±(1; v) as ∂λ logD±(λ; v)λ=0) is also under
way but will be more involved.

3.2. ‘Extraordinairy’ spectral functions

We therefore now specialize to the following pair of restricted determinants:

Qi±(v) def= D±(λ = 0; v) = det(−d2/dq2 + q4 + vq2)±. (72)

These entire functions of v will display numerous explicit properties. (Determinants of general
binomial potentials, det(−d2/dq2 +qN +vqM), M < N , can be handled likewise, cf section 4.)

Two immediate results are a pair of special values (cf equation (136) and table 1),

Qi+(0) = D+
4 (0) =

61/32
√
π

�( 1
6 )

Qi−(0) = D−
4 (0) =

�( 1
6 )

61/3
√
π

(73)
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Table 1. Analytical and numerical zeta-function values for several spectra. First two columns: Airy

zeros (cf appendix A.2.2; notation as in equation (153): τ
def= −Ai′(0)/Ai(0) = 31/3�( 2

3 )/�(
1
3 )).

Middle two columns: quartic oscillator (Ĥ4) levels (cf appendix A.2.1). Last two columns: zeros
of Qi± (cf section 3.2). Computations used analytical formulae when available, but were also cross-
checked against direct calculations on numerical spectra. Note: �( 1

6 ) = 22/3√π�( 1
3 )/�(

2
3 ) =

22/331/3√π/τ .

Spectra: Airy zeros Quartic oscillator Zeros of Qi±

Z(s) Z+
1 Z−1 Z+

4 Z−4 Z+ Z−

Z′(0) 0.086 1122 −0.229 9537 −0.146 0318 −0.547 1153 −0.168 5422 −0.178 0313

e−Z′(0)
2
√
π

31/3�( 1
3 )

2
√
π

32/3�( 2
3 )

24/331/3√π
�( 1

6 )

22/3√π
31/3�( 5

6 )

61/3�( 1
4 )

�( 1
6 )

√
2�( 1

6 )

61/3�( 1
4 )

=D+
1 (0) =D−

1 (0) =D+
4 (0) =D−

4 (0) =D+(0) =D−(0)
0.917 4912 1.258 5418 1.157 2330 1.728 2604 1.183 5782 1.194 8628

Z(0) 1
4 − 1

4
1
4 − 1

4
1
8 − 1

8

Z(1) 0 −τ =2Z−4 (1)
24/3π3

317/6�( 2
3 )

5
−34/3�( 2

3 )
5

210/3π2
=2Z+(1)

−0.729 0111 1.526 6059 0.763 3029 −0.198 0209 −0.396 0418

Z(2) 1/τ τ 2 cf [11], eqns (C.28, 33, 34)
1.371 7212 0.531 4572 0.914 7383 0.081 5825 0.357 8564 0.237 7466

Z(3) 1 −τ 3 + 1
2

0.112 5618 0.841 4950 0.019 0222 0.103 3821 0.038 5889

and a main functional relation, drawn from equation (50) (with ϕ = 2π/3 and β−1 ≡ 0) and
from the conjugacy formula V [,](q) ≡ q4 + (j,v)q2 (cf equation (48)):

e+iπ/6Qi+(jv)Qi−(v)− e−iπ/6Qi+(v)Qi−(jv) ≡ 2i (j
def= e2iπ/3). (74)

This functional relation is identical to that of the homogeneous quartic problem (143) if the
even and odd arguments are interchanged, otherwise it also resembles the Airy relation (149).
Actually, Qi± will display hybrid properties between those two cases (hence their name).

3.2.1. Zeros of Qi±. The entire functions Qi± vanish at those values v = −wk (<0) for which
λ = 0 is an eigenvalue for the potential q4 + vq2 (generalized spectral problem). As before,
the labelling of wk in increasing order makes the parity of k match that of the eigenfunctions.
(We do not expect any complex zeros.)

The first few zeros of Qi± evaluate as

k (Qi+) k (Qi−)
0 − 2.219 5971 1 − 3.251 1776
2 − 5.490 0693 3 − 6.159 8396
4 − 7.927 6920 5 − 8.485 4215
6 −10.029 209 7 −10.525 121.

(75)

The zeros (−wk) also obey an exact quantization condition immediately following from
equation (74) by analogy with its quartic (144) and Airy (150) counterparts, of which it looks
like a crossbreed:

2

π
arg Qi±(−jw)w=wk

= k +
1

2
± 1

6
for k = 0,2,4,...

1,3,5,...
. (76)
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Anticipating the next paragraph on asymptotic results, we can at once estimate the zeros
{wk} for large k by solving the Schrödinger equation with potential Vv(q) = q4 +vq2 and with
λ = 0 semiclassically, for large v = −w < 0. For q � 1, ψ(q) has standard WKB forms
in both allowed and forbidden regions (decaying in the latter); at the same time, for q � √

w

(far inside the allowed region), ψ(q) must approximately satisfy (−d2/dq2 −wq2)ψ = 0, an
equation solvable by Bessel functions (cf equation (135)); specifically here,

ψ±(q) ∝ q1/2J∓1/4(
√
wq2/2)

( even
odd solutions

)
. (77)

Matching the two approximations in the intermediate region {1 � q � √
w} then yields the

semiclassical quantization formula

1

2π

∮
p2+V (q)=0

p dq ∼ k +
3

4
for k even

∼ k +
1

4
for k odd.

(78)

Remark. This Bohr–Sommerfeld quantization rule (78) is appropriate for a general symmetric
double-well potential with a parabolic barrier top precisely kept at the energy 0; it induces
a splitting between even and odd quantized actions exactly half-way between their (quasi)
degeneracy towards the bottom of the wells and the equidistant spacing achieved high above
the barrier top [19].

Now, for the current potential V−w(q) = q4 − wq2,∮
p2+V−w(q)=0

p dq = 2
∫ +

√
w

−√w

√
wq2 − q4 dq ≡ 4

3w
3/2 (79)

giving µ = 3
2 as the growth order for this spectrum.

3.2.2. Asymptotic properties. An essential calculation afforded by the present formalism
is the asymptotic evaluation of the spectral determinants for v → ∞. The straightforward
behaviour (70) of the individual eigenvalues only suggests that D±(λ; v) should closely relate
to det(−d2/dq2 + vq2 + λ)± ≡ D±

2 (λ|
√
v) (the operator −d2/dq2 + vq2 being equivalent to√

vĤ2). We will therefore need the full expressions of these harmonic spectral determinants
for all v, which follow for instance from equations (15), (155), (159):

D±
2 (λ|

√
v) = (

√
2v1/8)±1−λ/√v√2π

�(
2∓1+λ/

√
v

4 )
. (80)

We will now connect all the determinants through the respective canonical recessive
solutions (39), which can be fully evaluated (at λ = 0) in the WKB approximation: ψ4,λ=0 for
the quartic Vv(q) = q4 + vq2 on the one hand, for which '0(q) = (q4 + vq2)1/2 and∫ +∞

q

'0(q) dq = −1

3
(q2 + v)3/2 ∼ −q3

3
− v

2
q + O

(
1

q

)
for q → +∞ (81)

�⇒ ψ4,0 ∼ (q4 + vq2)−1/4e−(q
2+v)3/2/3 for (q4 + vq2)→ +∞ (82)

and ψ2,λ=0 for the harmonic potential (vq2) on the other hand, for which '0(q) = v1/2q and∫ +∞

q

'0(q) dq = −
√
v

2
q2

�⇒ ψ2,0 ∼ (vq2)−1/4e−
√
vq2/2 for (vq2)→ +∞.

(83)

(In both cases, the large-q behaviour was checked against equation (33).)
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Figure 1. The functions Qi− and (−Qi+) (of equation (72)), which specially resemble the Airy
functions Ai and Ai′ respectively, plus logarithmic plots to magnify their large-v asymptotics on the
decaying side (v � 0). Numerical values: + for Qi+, and ◦ for Qi− (computed using equation (38),
with an input of K ≈ 103 numerical eigenvalues of the operator (−d2/dq2 + q4 + vq2) for every
value of the coupling constant v). The dashed lines plot the large-v asymptotic formulae (86), (87).

Now comes the central feature when v →∞: while the quartic recessive solutionψ4,0(q)

(initially specified whenq → +∞) has to match a harmonic recessive solution upon penetrating
the intermediate region 1 � q � √

v, the normalization of ψ4,0 (canonically set for q � √
v)

need not match that of ψ2,0 (canonically set for 1 � q and no q4 term). A crucial quantity is
actually the ratio (ψ4,0/ψ2,0), and it simply emerges by reexpanding equation (82) for

√
v � q,

as

ψ4,0 ∼ (vq2)−1/4e−v
3/2/3−√vq2/2 ∼ e−v

3/2/3ψ2,0 for 1 � q � √
v. (84)

Thereupon, invoking equation (47) once for the quartic case, then for the harmonic case at
λ = 0, and finally equation (80), the latest result translates to

D±(0; v) ∼ e−v
3/2/3D±

2 (0|
√
v) ∼ e−v

3/2/3v±1/8D±
2 (0) (85)

that is,

Qi+(v) ∼ 2
√
π

�( 1
4 )
v+1/8e−v

3/2/3

Qi−(v) ∼
√
π

�( 3
4 )
v−1/8e−v

3/2/3 (v →∞).

(86)

So, we obtained asymptotic behaviours for these new functions which strongly resemble those
of the Airy functions (−Ai′ and Ai respectively), with an identical growth orderµ = 3

2 . Similar



7438 A Voros

reasonings should extend equation (86) to complex v with | arg v| < π , and to

Qi+(−w) ∼ 4
√
π

�( 1
4 )
w+1/8 cos

[
w3/2

3
+
π

8

]

Qi−(−w) ∼ 2
√
π

�( 3
4 )
w−1/8 cos

[
w3/2

3
− π

8

] (87)

for w→ +∞.
The asymptotic formula (78), (79) for the zeros (−wk) can now be consistently regained:

either from the asymptotic formula (87) on the negative real axis, or from the exact quantization
condition (76) asymptotically expanded by means of (86) on the half-line {arg v = π/3}.

Figure 1 plots the pair of functions Qi± and their asymptotic forms. Given their variegated
properties, the idea that Qi± should be reducible to simpler known functions seems unlikely.

3.2.3. Spectral functions of the zeros and further exact results. We must also consider
spectral functions of the generalized spectrum {wk}: its zeta-functions Z±(s, v), and spectral
determinants D±(v), which now refer to a singular operator, i.e. (with Ĥ4 = −d2/dq2 + q4, cf
(52))

Z±(s, v) ≡ Tr [(q−1Ĥ4q
−1 + v)±]−s

D±(v) ≡ det(q−1Ĥ4q
−1 + v)±

(88)

whereas Qi±(v) = det(Ĥ4 + vq2)±; hence we cannot readily assert that this spectrum {wk} is
admissible in the sense of section 1, nevertheless all the ensuing consequences are numerically
verifiable and support such an assumption. (If this singular operator q−1Ĥ4q

−1 is self-adjoint,
then the generalized spectrum {wk} is real as we assumed.)

Firstly, the semiclassical quantization conditions (78), (79) for this spectrum fix the leading
trace identities according to equation (36):

b±0 = ∓ 1
4 �⇒ Z±(0) = ± 1

8 . (89)

Then, even though Qi±(v) are spectral determinants (at a frozen energy), they do not have
to coincide with D±(v). Simply, both being entire functions with the same order 3

2 and the
same zeros, they must be related as D±(v) ≡ C±ec

±vQi±(v) (C±, c± constants).
Quite generally, a complete identification of such free constants can be based on a principle

of ‘semiclassical compliance’ whenever the spectrum of zeros is admissible: the spectral
determinant is a priori known up to a factor expP(λ) (with P a polynomial of degree � µ =
the growth order), but only for one such P can the canonical semiclassical form (8) be also
satisfied, and this lifts the ambiguity completely.

Here, the asymptotic formulae (85) are known for log Qi±(v) down to the constant terms
(included), and only the latter are actually noncanonical in v → +∞, hence necessarily

D±(v) ≡ Qi±(v)/D±
2 (0). (90)

Several results follow from equation (90) (and (73)):

• Explicit Stirling constants for the spectrum {wk} (playing the same role as
√

2π for the
integers, in view of equation (38) at λ = 0):

D±(0) ≡ exp[−Z±(0)] = D±
4 (0)/D

±
2 (0) (see table 1). (91)

• Upon a simple explicit rescaling, the expansions (13) written for D±(v) yield

Qi±(v) = Qi±(0) exp

[
−

∞∑
n=1

Z±(n)
n

(−v)n
]

(|v| < w0). (92)
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Equations (91), (92) also amount to

[− log Qi±](n)(0) =
{
(−1)n(n− 1)!Z±(n) (n �= 0)

(Z±)′(0) + (Z±
2 )

′(0) (n = 0).
(93)

With these results, we can now draw further consequences from the functional relation (74)
and from its coincidence with the homogeneous quartic equation (143) up to the exchange
of parities.

• The complete determinants D = D+D− being unaffected by this interchange, the quartic
cocycle identity (145) ofD4 must remain satisfied by its analogue, namely the new product
function (Qi+Qi−). Hence that functional equation (145) now shows two completely
different entire solutions, the former having order µ4 = 3

4 and the latter µ1 = 3
2 (tied

by the duality relation µ−1
4 + µ−1

1 = 2). (We do not know if still other nontrivial entire
solutions may exist.)

• Because of equations (90)–(92), it is now the spectral zeta-functions Z±(s) which inherit
sum rules for s = n � 1, and these have to be the quartic rules (146) with even/odd
arguments swapped, giving

Z−(1)− 2Z+(1) = 0
2Z−(2)− Z+(2) = 3[Z−(1)− Z+(1)]2

Z(3) = Z(1)3/6− Z(1)Z(2)/2 etc
(94)

(every identity of order 3n expresses Z(3n) in terms of the lower Z(m) in exactly the
same form as for the quartic zeta-value Z4(3n), cf equation (146)).

We finally evaluate Z±(1) in closed form, by analogy with the derivation of equation (140)
for Z±

N(1). The values Z±(1) themselves are regularized quantities, but the first sum rule (94)
also implies −Z+(1) = ZP(1), and the latter has the (semi) convergent defining series∑∞

k=0(−1)k/wk . This series can actually be summed when the wk are more generally defined
(for N � 3) as the roots of det(−d2/dq2 + |q|N − wq2) = 0, i.e. as the eigenvalues of the
singular operator q−1ĤNq

−1 (cf equation (88)); hence

ZP
N(1) = Tr P̂ (q−1ĤNq

−1)−1 = Tr P̂ qĤ−1
N q P̂ = parity operator. (95)

Then, thanks to the explicit formulae (135), (137) giving the kernel of Ĥ−1
N , and in full parallel

with equation (139), this turns into the explicit integral

ZP
N(1) =

4ν

π
sin νπ

∫ ∞

0
[Kν(2νq

1+N/2)]2q3 dq ν = 1

N + 2
(96)

i.e. a (convergent) Weber–Schafheitlin integral, which finally gives

ZP
N(1) =

sin νπ

2
√
π
(2ν)2−8ν �(3ν)�(4ν)�(5ν)

�(4ν + 1
2 )

. (97)

For N = 4, by the first of equations (94), this also yields the special values −Z+(1) =
− 1

2Z−(1) as given in table 1 (= −(log Qi+)′(0) = − 1
2 (log Qi−)′(0) as well, thanks to

equation (93) for n = 1).
Table 1 includes some values of these zeta-functions Z±(s). We computed them

both analytically and by brute force (using the data from equations (75), (78), (79) within
equations (35), (38)), and were thus able to numerically check all the above results.
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3.3. A mirror problem without a solution

The new functions Qi± algebraically resemble the spectral determinants of the homogeneous
quartic potential, but share many qualitative and asymptotic properties with the Airy functions,
especially their order µ1 = 3

2 . This coincidence clearly reflects the N = 1 ↔ 4 duality. It
is then tempting to seek a fourth pair of functions in the unoccupied symmetrical position:
verifying the Airy functional identities (with +/− arguments swapped), but having the order
µ4 = 3

4 and the qualitative features of the homogeneous quartic determinants.
However, not only is it difficult to conceive such functions around the spectral framework

of the linear potential, but in fact it is easily shown that a perfect mirror solution cannot exist.
The functions of such a pair should have only negative zeros (−εk) to fully resemble the
determinants D±

4 . They would also obey the Airy sum rules (152) with the +/− superscripts
exchanged, i.e.

Z−(1) = 0 Z+(2) = Z+(1)2 etc (98)

withZ±(s) =∑
k ε

−s
k (running over even

odd k) now also for s = 1 sinceµ = 3
4 < 1 (in contrast to

the Airy case, where Z±(1) underwent regularization). Under this precise circumstance, each
of the leading putative sum rules above is already impossible to satisfy. Therefore, we cannot
obtain other partner functions to Qi± in the precise manner described.

(By contrast, this question remains open if we relax the εk to allow negative or complex
values, or the order constraint µ = 3

4 .)

3.4. Concluding remarks

Our study of the functions Qi± has remained introductory. We have explicitly proved neither
that their zeros are purely real (negative), nor that they form an admissible sequence. It would
also be nice to know their asymptotic expansions (86), (87) to all orders in v as for the Airy
function (these would also give higher trace identities for Z±(−m)); and accessorily, to find
closed forms for Z±(2) like those for Z±

N(2) [11, appendix C]. (From a general standpoint,
one needs to extend the formalism of section 1 to operators Ĥ which can be singular as in
equation (88), so as to encompass the Qi± functions; self-adjointness of these operators should
also be ascertained.)

The functions Qi± have truly revealed hybrid features. Their analytical and algebraic
properties are undoubtedly quartic, while their asymptotic properties are close to the Airy case.
(Unlike the Airy functions, they do not satisfy any obvious differential, or linear-difference,
equations.) All in all, their structure is very simple and strongly reminiscent of the spectral
determinants of homogeneous potentials (cf the appendix), but overall not reducible to the
latter; thus, Qi± provide seemingly new solutions to the functional identities governing the
homogeneous quartic determinants. We therefore hope that they might also find some roles
in the correspondences recently unravelled between those functional equations and exactly
solvable models of statistical mechanics or conformal field theory [14].

4. Exercise 3. Quasi-exactly solvable binomial potentials

Keeping the same techniques as previously initiated for the functions Qi±, we now turn to the
zero-energy determinants for some other binomial potentials on the half-line {q � 0}: namely,

V (q) = qN + vqM with N even and M ≡ N

2
− 1 throughout (99)

because the corresponding Schrödinger equation (16) has special properties: it is solvable
at λ = 0 (in terms of confluent hypergeometric functions [20, 21]), and for selected values
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of v it also provides the simplest examples of quasi-exactly solvable systems [22]. Then all
calculations may strictly follow the previous pattern (referring to section 3 for details), yet
some of the final results will be quite different.

For the exact formalism of section 1, retaining the notations of equation (48), these
potentials enjoy an exclusive symmetry, namely, all their conjugate potentials are real:

V [,](q) ≡ qN + (−1),vqM for all ,. (100)

Moreover, the evaluation of equation (25) gives a special nonzero residue formula for the first
time here: (V (q) + λ)−s+

1
2 ∼ qN(−s+

1
2 ) + v(−s + 1

2 )q
−1−Ns for q → +∞ implies

β−1(s) ≡ v(−s + 1
2 ) (independent of λ,N). (101)

We henceforth focus upon the restricted determinants D±
N(λ = 0; v), where

D±
N(λ; v) def= det(−d2/dq2 + qN + vq

N
2 −1 + λ)±. (102)

As with Qi± before, two immediate results are a pair of special values explicitly recoverable
from equation (136),

D±
N(0; 0) = det(−d2/dq2 + qN)± = D±

N(0) (103)

and a main functional relation, drawn from equation (50) but now taking a special form, due
to the particular dependence of the exponent M upon N and to equation (101) (we recall that
ϕ = 4π

N+2 ):

e+iϕ/4D+
N(0;−v)D−

N(0; v)− e−iϕ/4D+
N(0; v)D−

N(0;−v) ≡ 2ie+iϕv/4. (104)

4.1. Zeros of D±
N(0; v)

The zeros of D±
N(0; v) are again the values v = −wk < 0 for which λ = 0 is an eigenvalue

of ĤN + v|q|M (a generalized spectral problem). But now equation (104) is very close to the
harmonic functional relation (156), especially considering the value π of the rotation angle
acting on the spectral variable (and also the special right-hand side phase); then just like
equation (156), equation (104) splits into real and imaginary parts and reduces to

D+
N(0; v)D−

N(0;−v) ≡ 2
(

sin
ϕ

2

)−1
cos

ϕ

4
(v − 1) (105)

which is exactly a (shifted) gamma-function reflection formula. This spectral problem is then
exactly solvable like the harmonic case: the zeros of the right-hand side, which form one
doubly infinite arithmetic progression, must simply be dispatched according to their signs
towards one or the other factor on the left-hand side, resulting in the exact eigenvalue formulae

w2n = N

2
+ (N + 2)n w2n+1 = N

2
+ 2 + (N + 2)n (106)

i.e.
2

N + 2
wk = k +

1

2
± N − 2

2(N + 2)
for k = 0,2,4,...

1,3,5,...
. (107)

The spectrum {wk} therefore has growth order unity, irrespective of N . For N = 2, the
generalized spectral problem restores the standard harmonic oscillator problem det(−d2/dq2 +
q2 + v) = 0. In reverse, the subsequent results will prove perfect generalizations to all even
degrees N of the classic harmonic oscillator properties. This clearly provides another view on
the partial solvability properties of the potentials (99).
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For instance, we can show that semiclassical quantization is exact for this zero-energy
generalized spectrum. We proceed just as for Qi± in section 3.2.1; for large v = −w < 0,
now the comparison equation is (−d2/dq2 − wqM)ψ = 0, solved by

ψ±(q) ∝ q1/2J∓2ν

(
√
w
q

N
4 + 1

2

N
4 + 1

2

) ( even
odd solutions

)
ν

def= 1

N + 2
(108)

hence the asymptotic matching in the intermediate region 1 � q � w2ν yields the
semiclassical quantization formula

1

2π

∮
p2+V (q)=0

p dq ∼ k +
1

2
± N − 2

2(N + 2)
for k

even
odd (109)

while the left-hand side, under the change of variables wx = q
N
2 +1, yields

4

2π

∫ w2ν

0
(wqM − qN)1/2 dq = 4w

(N + 2)π

∫ 1

0

√
1− x

x
dx = 2

N + 2
w (110)

thus the resulting Bohr–Sommerfeld rule manifestly coincides with the exact one (107).
The exact quantization formula (107)—like our earlier equation (76) for the zeros of

Qi±(v) = det(−d2/dq2 + q4 + vq2)±—displays a hybrid character. The right-hand side of
equation (107) is that of the exact quantization formula (51) for an arbitrary potential of
degree N (whose semiclassical quantization formula is definitely different); whereas its left-
hand side is linear in the spectral variable (entirely originating from the term (−ϕβ−1(0)/π)
in equation (51)), and its semiclassical form is exact, both as in the harmonic case.

4.2. Asymptotic properties

We can obtain the asymptotic v → +∞ form of D±
N(0; v) just as in section 3.2.2: we relate

these determinants to the canonical recessive solution ;N for the potential V (q) = qN + vqM

at λ = 0, then match ;N with the analogous solution ψM for the comparison potential vqM .
Hence we need the canonical WKB forms (39) for these two potentials, and primarily the
symbolic integral

∫∞
q
V (q ′)1/2 dq ′.

• Full potential V : with a change of variables as above,
∫
V (q)1/2 dq = 4νv

∫ √
1 + x2 dx,

we have the obvious primitive∫ q

0
V (q ′)1/2dq ′ = 2ν

[
v arcsinh

q
N
4 + 1

2√
v

+ q
N
4 + 1

2 (v + q
N
2 +1)1/2

]

∼ 2ν

[
v

((
N

4
+

1

2

)
log q − 1

2
log v + log 2

)
+ q

N
2 +1 +

v

2

]
(q → +∞).

(111)

We must then set
∫ +∞
q

V (q ′)1/2dq ′ def= − ∫ q0 V (q ′)1/2dq ′ + C, with the target that the

large-q behaviour of ;N ∼ V (q)−1/4 exp[
∫ +∞
q

V (q ′)1/2 dq ′] should obey the canonical

equation (40), now with eC = 2−v/N by equations (33), (101); i.e.

;N(q) ∼ 2−v/Nq−N/4−v/2e−2νq1+N/2
. (112)

This adjustment for C according to equations (111), (112) yields the full WKB
specification of the canonical recessive solution, when V (q) ≡ qN + vqM , as

;N(q) ∼ 2−v/Ne−νv(log v−1−2 log 2)V (q)−1/4

× exp

[
−
∫ q

0
V (q ′)1/2 dq ′

]
(V (q)→ +∞). (113)
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• Comparison with the potential vqM : the corresponding canonical recessive solution ψM

is expressible from equation (135) exactly, but its WKB form suffices here:

ψM(q) ∼ (vqM)−1/4 exp

[
−√vq M

2 +1

/(
M

2
+ 1

)]
(114)

Now, the matching with equations (111), (113) re-expanded for v � q yields the result

;N(q) ∼ 2−v/Ne−νv(log v−1−2 log 2)ψM(q) (v → +∞). (115)

This then translates back to the determinants, by equation (47), as

det

(
− d2

dq2
+ qN + vqM

)±
∼ 2−v/Ne−νv(log v−1−2 log 2) det

(
− d2

dq2
+ vqM

)±
. (116)

However, det(−d2/dq2 + vqM)± ≡ v4νZ±M(0)D±
M(0) by equation (15), so, finally,

D±
N(0; v) ∼ e−

1
N+2 v(log v−1)2

N−2
N(N+2) vv±

1
N+2D±

N
2 −1

(0) v → +∞. (117)

4.3. Spectral functions of the zeros and further exact results

As in section 3.2.3, we also need the spectral determinants D±
N(v) built directly for the

generalized (even and odd) spectra {wk}. Since these form the exact (semi-infinite) arithmetic
progressions (107), of growth order 1, the answer must now have the exact form D±

N(v) ≡
C±ec

±v/�(ν(v ∓ 1) + 1
2 ). Compliance with equation (8a, c) then fixes the constants, giving

D±
N(v) ≡

νν(v∓1)
√

2π

�(ν(v ∓ 1) + 1
2 )

(118)

(which agrees with the harmonic spectral determinants (155) for N = 2).
We can now complete the evaluation of the former determinants D±

N(0; v) themselves,
which must have the same zeros as D±

N(v) and the same order unity, hence necessarily
D±

N(0; v) ≡ C±ec±vD±
N(v). This plus the semiclassical constraint (8a, c) again fixes the

constants, yielding

D±
N(0; v) ≡ 2

N−2
N(N+2) vD±

N
2 −1

(0)D±
N(v). (119)

In contrast to equation (90) for the Qi± case, here the latter determinants are known by
equation (118), so we end up with fully closed forms,

D+
N(0; v) ≡ −2−v/N(4ν)ν(v+1)+ 1

2�(−2ν)

�(ν(v − 1) + 1
2 )

D−
N(0; v) ≡

2−v/N(4ν)ν(v−1)+ 1
2�(2ν)

�(ν(v + 1) + 1
2 )

.

(120)

Remark. At v = 0, the identity (119) specifying the ratiosC±ec±v = D±
N(0; v)/D±

N(v) simply
becomes the duplication formula for�(2ν), a fact which also directly fixes the constantsC±; by
contrast, we see no ‘cheap’ way to obtain the constants c±—i.e. c+ = c− = (log 2)(2ν− 1

N
) =

(log 2)( N−2
2(N+2) ); in particular, equation (105) alone is of no avail in this respect.

Alternatively, we can invoke the solvability of this potential at zero energy to obtain
the spectral determinants directly, just as we deduced equation (136) for the homogeneous
potentials (cf appendix). Here the canonical recessive solution ;N normalized by
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equation (112) can be expressed in terms of a confluent hypergeometric function U(a, b, z) or
equivalently a Whittaker function Wκ,ν(z), as [23, equation 2.273(12)]

;N(q) ≡ 2−v/N(4ν)ν(v−1)+
1
2 e−2νq1+N/2

U(ν(v − 1) + 1
2 , 1− 2ν, 4νq1+N/2)

≡ 2−v/N(4ν)νvq−N/4W−νv,ν(4νq1+N/2)
(121)

(the normalization is fixed by reference to the known q → +∞ forms of these functions). In
turn, the connection formula

U(a, b, z) ≡ �(1− b)

�(1 + a − b)
M(a, b, z) + z1−b �(b − 1)

�(a)
M(1 + a − b, 2− b, z)

together with M(a, b, 0) ≡ 1, determines the values of ;N(0), ; ′
N(0), which finally yield

the determinants through equation (47): these then coincide with equation (120) indeed.
(Conversely, the present method can be viewed as a purely spectral derivation of the connection
formula for that confluent hypergeometric function. Again, however, the right reference
normalization (112) of ;N has to be expressly fed in.)

Remark. The knowledge of ;N(q) also yields an expression for
∑
(−1)k/wk , in full analogy

with equations (95)–(97) above, but here this only recovers a special case of the known integrals∫∞
0 Wκ,ν(z)

2dz/z [31, equation 7.611(4)]; likewise, the sum rules for
∑
(±1)k/wn

k (n > 1)
should only reproduce elementary identities among Hurwitz zeta-values here.

For N = 2, equation (120) restores the ordinary harmonic spectral determinants (155).
The next even case, V (q) = q6 + vq2, is strongly highlighted in the studies on quasi-exactly
solvable potentials [22]. However, our present results hold identically irrespective of the parity
of the full potential qN + vqM , beginning with the potential q4 + vq on the half-line {q > 0},
so we end with a few remarks about these noneven potentials.

4.4. The case of noneven potentials

Our exact results above hold equally well for noneven potentialsV (q) = qN +vq
N
2 −1, obtained

when N is a multiple of 4, as for even ones. Then, as always, the exact zeros {wk} of
det(−d2/dq2 + qN + vq

N
2 −1)± as given by equation (107) refer to the potential defined on

the half-line {q > 0}, with a Neumann/Dirichlet condition at q = 0 for the +/− parity, or
equivalently to the singular potential V (|q|) over the whole real line.

For N a multiple of 4, an additional exact spectral property is derivable. We now consider
the (noneven) potential V (q) over the whole real line. The complete spectral determinant D

for such a potential of even degreeN is not given byD(λ) = D+(λ)D−(λ) (which corresponds
to the even potential V (|q|)), but in full generality by [10]

D(λ) ≡ 1
2 [D+(λ)D[1+N/2]−(λ) + D[1+N/2]+(λ)D−(λ)]. (122)

In particular, for V (q) = qN + vq
N
2 −1 with N ≡ 0 [mod4], by equation (100),

DN(0; v) ≡ 1

2
[D+

N(0; v)D−
N(0;−v) + D+

N(0;−v)D−
N(0; v)] ≡

cosπνv

sin πν
(123)

(the explicit end result uses equation (120)). Thus, the values ofw = −v such that the potential
qN −wq

N
2 −1 on the whole real line has a zero eigenvalue are also exactly quantized: they are

the zeros of cos π
N+2v, i.e.

w′
n = (N + 2)(n + 1/2) (n ∈ Z) if N ≡ 0 [mod 4]. (124)

This is a spectrum naturally invariant under reflection; whereas in the even potential case
N ≡ 2 [mod 4], the spectrum {wk} of equation (107) is recovered.
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Curiously, the eigenfunctions (121) corresponding to the explicit generalized
eigenvalues (124) do not seem to reduce to elementary functions, while they do so for the
generalized eigenvalues (107); still, the basis that they form might prove useful (e.g. the
N = 4 basis for general quartic anharmonic oscillators).

In conclusion, a unified analytical formalism has displayed the quantization of the special
zero energy in potentials of the form qN + vq

N
2 −1 (beginning with N = 4), as well as the

connection formula for the corresponding confluent hypergeometric functions, to be clear
generalizations of the explicit exact quantization scheme for the harmonic oscillator. In contrast
to the previous example, however, this analysis treats the problem entirely by known functions
and does not generate any new ones.
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Appendix. Formulae for the potentials qN

We recapitulate specific results and formulae, otherwise scattered in [2,3,5,7,11,24–29], about
the spectral functions of the homogeneous Schrödinger operators on the half-line,

ĤN
def= − d2

dq2
+ qN q ∈ [0,+∞) N � 1 integer. (125)

(Not all N -dependences will be systematically stated.) As in section 1.2, we call Ĥ +
N

(respectively Ĥ−
N ) the operator with the Neumann (respectively Dirichlet) condition at q = 0.

Three cases of special interest to us will be, on one hand, the harmonic (N = 2) and linear
(N = 1) cases, both of which are describable using known special functions, as opposed to the
nonelementary quartic case (N = 4). At the same time, N = 4 and 1 are both regular cases,
and dual to each other (they share the same number of conjugates L = 3), whereas N = 2
stands out as a singular (confluent) case (also self-dual) [29].

A.1. General N

Notations:

D±
N(λ)

def= det(Ĥ±
N + λ) and µN = N + 2

2N
ϕ = 4π

N + 2
. (126)

The set of exponents in equation (2) reduces to {0} ∪ {(2n − 1)µ}n=0,1,2,...; the coefficient of
the leading singularity t−µ is

c±−µ = (2
√
π)−1�(1 + 1/N). (127)

In accordance with equation (5), the trace identities then have the pattern [3, 5]

ZN(0) = 0 ZP
N(0) = 1

2 (128)

ZN(−m) = 0 unless m =

(
1

2
+ r

)(
1 +

N

2

)

ZP
N(−m) = 0 unless m = r

(
1 +

N

2

) for m and r ∈ N. (129)

(Resulting asymptotic forms (8a) for logD±
N(λ): cf [29, equation (11)].)



7446 A Voros

• As all the conjugate potentials V [,](q) (equation (48)) coincide here, the main functional
relation (50) for the spectral determinants boils down to [2]

e+iϕ/4D+
N(e

−iϕλ)D−
N(λ)− e−iϕ/4D+

N(λ)D
−
N(e

−iϕλ) ≡ 2i (N �= 2) (130)

or, equivalently, to a multiplicative ‘coboundary identity’ linking the full and skew
determinants, [11, 26, 28]

DP
N(λ)/D

P
N(e

−iϕλ) ≡ ei(−2?N(λ)+ϕ/2)

?N(λ)
def= arcsin([DN(e

−iϕλ)DN(λ)]
−1/2)

(131)

the branch of the arcsin being fixed at λ = 0 with the help of equation (130):

DN(0) = (sin ϕ/4)−1 �⇒ ?N(0)
def= ϕ/4. (132)

• The exact quantization condition, drawn from equation (130), is [27–29]

2

π
argD±

N(−e−iϕE)E=Ek
= k +

1

2
± N − 2

2(N + 2)
for k = 0,2,4,...

1,3,5,...
(N �= 2).

(133)

• By multiplying together all the conjugates of equation (131), a corresponding
multiplicative ‘cocycle identity’ (of length L given by equation (49)) results, providing a
consistency condition upon D alone in the implicit form [26]

L−1∑
,=0

?N(e
−i,ϕλ) ≡ Lϕ/4 (134)

i.e. an autonomous functional equation, circularly symmetric of order L (and convertible
to a polynomial form) for the complete determinant DN .

• Some special values of spectral functions also become explicit ( [3, 11, appendix C])
thanks to the solvability of the differential equation (ĤN + λ)ψλ(q) = 0 at λ = 0,
specifically here by Bessel functions [20, vol 2 Chapter 7.2.8]: the canonical recessive
solution (39), of asymptotic behaviourψ0(q) ∼ q−N/4 exp[−q1+N/2/(1+N/2)] prescribed
by equation (40), is

ψ0(q) ≡ 2
√
ν/πq1/2Kν(2νq

1+N/2)

(
ν

def= 1

N + 2

)
(135)

(normalized by reference to the known z → +∞ behaviour of Kν(z)). In turn,
the values ψ0(0), ψ ′

0(0) follow from Kν(z) = π(2 sin νπ)−1[I−ν(z) − Iν(z)] plus
I±ν(z) ∼ (z/2)±ν/�(±ν + 1) for z→ 0, and finally equation (47) yields

D+
N(0) =

�(1− ν)

νNν/2
√
π

D−
N(0) =

�(ν)νNν/2

√
π

�⇒ DN(0) = 1

sin νπ

(136)

(the last result agreeing with equation (132)).
Equation (135) also generates formulae for Z±

N(n), n = 1, 2, . . . , by fully specifying a
general expression of the 1D Green function,

〈q|(Ĥ + λ)−1|q ′〉 = W−1
λ ψλ(−min{q, q ′})ψλ(max{q, q ′}) (137)

(Wλ
def= Wronskian{ψλ(−q), ψλ(q)}) (138)

when Ĥ = ĤN and λ = 0 (with Wλ ≡ 2D(λ) by equation (45), implying W0 =
2(sin ϕ/4)−1 by equation (136)). Integral formulae giving ZN(n) as Tr (Ĥ−1

N )n, and
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ZP
N(n) as Tr P̂ (Ĥ−1

N )n (P̂
def= the parity operator), thus become explicit. For n = 1, the

latter is the simpler:

ZP
N(1) =

4ν

π
sin νπ

∫ ∞

0
[Kν(2νq

1+N/2)]2q dq ν = 1

N + 2
; (139)

finally this evaluates by a Weber–Schafheitlin formula [20, vol 2, chapter 7.14,
equation (36)], and likewise for ZN(1) [3]:

ZP
N(1) =

sin νπ

2
√
π
(2ν)2−4ν �(ν)�(2ν)�(3ν)

�(2ν + 1
2 )

ZN(1) = tan 2νπ

tan νπ
ZP
N(1). (140)

Remark. The results (136), (140) also work for N = 1, 2; —this approach can still
handle Z±

N(2), but with final results reducible only to 4F3 generalized hypergeometric
series: [11, appendix C].

• For general integer n, by contrast, the farthest explicit algebraic result we can reach is a
single identity (a sum rule) at the level of each doublet (Z+

N(n), Z
−
N(n)), and this comes

simply by expanding the functional identity (130) in all powers λn, as [11]

sin

[
ϕ

4
+

∞∑
n=1

sin
nϕ

2

ZP
N(n)

n
(−λ)n

]
≡ exp

[
Z′
N(0) +

∞∑
m=1

cos
mϕ

2

ZN(m)

m
(−λ)m

]
(141)

then equating both sides of this generating identity at each order n: at n = 0 we already
obtainedDN(0) = 1/ sin(ϕ/4) (equation (132) or (136)); then, at higher orders, we obtain
sum rules in the form

cot
ϕ

4
sin

ϕ

2
ZP
N(1)− cos

ϕ

2
ZN(1) = 0 (N �= 2)

cot
ϕ

4
sin

2ϕ

2
ZP
N(2)− cos

2ϕ

2
ZN(2) =

[
2 cos

ϕ

4
ZP
N(1)

]2

cot
ϕ

4
sin

3ϕ

2
ZP
N(3)− cos

3ϕ

2
ZN(3)

= 4 cos
ϕ

2

[
3 cos

ϕ

2
ZP
N(1)Z

P
N(2)− 2 cos2 ϕ

4
ZP
N(1)

3
]

...

cot
ϕ

4
sin

nϕ

2
ZP
N(n)− cos

nϕ

2
ZN(n) = a polynomial of {Z±

N(m)}1�m<n

(142)

(the first line also follows from equation (140)).

Other results are resurgence properties of the spectral determinants (namely, exact
analytical constraints on their (1/h̄)-Borel transforms) [2, 11, 30].

A.2. Special cases

Out of the preceding results valid for general N , we only restate those which are specifically
needed in the main text, or which take a particular form; special and numerical values are in

table 1. We will be using j
def= e2iπ/3.
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A.2.1. N = 4. This case (quartic oscillator) has order µ = 3
4 .

Main functional relation (130):

e+iπ/6D+
4 (j

−1λ)D−
4 (λ)− e−iπ/6D+

4 (λ)D
−
4 (j

−1λ) ≡ 2i (ϕ = 2π/3). (143)

Exact quantization condition (133):

2

π
argD±

4 (−j2E)E=Ek
= k +

1

2
± 1

6
for k = 0,2,4,...

1,3,5,...
. (144)

Cocycle functional equation (134): its algebraic form is

D4(λ)D4(jλ)D4(j
2λ) ≡ D4(λ) + D4(jλ) + D4(j

2λ) + 2. (145)

Special values for D±
4 (0), Z

±
4 (1): see table 1 (note that D4(0) = 2).

The sum rules (142) can also be written for N = 4 as

Z+
4 (1)− 2Z−

4 (1) = 0
2Z+

4 (2)− Z−
4 (2) = 3[Z+

4 (1)− Z−
4 (1)]

2

Z4(3) = Z4(1)
3/6− Z4(1)Z4(2)/2 etc.

(146)

(In addition, Z±
4 (s) have been asymptotically evaluated for s → −∞, by exploiting the

resurgence equations for the spectral determinants [2, 3].)

A.2.2. N = 1. The eigenvaluesEk are the (unsigned) zeros of the Airy functions, here meant
as Ai (for odd parity) and Ai′ (for even parity) [21, Chapter 10.4]. A few results nevertheless
seem new [29]. The order is µ = 3

2 .
The canonical recessive solution simply relates to the Airy function:

ψλ(q) ≡ 2
√
πAi(q + λ). (147)

The spectral determinants are then also Airy functions by equation (47),

D+
1 (λ) = −2

√
πAi′(λ) D−

1 (λ) = 2
√
πAi(λ)

�⇒ D1(λ) = −2π(Ai2)′(λ)
(148)

and their functional relation (130) boils down to the classic Wronskian identity for Ai(·) and
Ai(j2·):

e+iπ/3D+
1 (jλ)D

−
1 (λ)− e−iπ/3D+

1 (λ)D
−
1 (jλ) ≡ 2i (ϕ = 4π/3). (149)

Exact quantization condition (133):

2

π
argD±

1 (−jE)E=Ek
= k +

1

2
∓ 1

6
for k = 0,2,4,...

1,3,5,...
. (150)

Cocycle identity: the algebraic form of (134) for N = 1 is

D1(λ)
2 + D1(jλ)

2 + D1(j
2λ)2 − 2[D1(jλ)D1(j

2λ) + D1(j
2λ)D1(λ) + D1(λ)D1(jλ)] + 4 ≡ 0.

(151)

Equations (136) for D±
1 (0) just express the known values of Ai(0), Ai′(0) (see table 1).

Sum rules (142):

Z+
1 (1) = 0 Z−

1 (2) = Z−
1 (1)

2 Z1(3) = 5Z1(1)
3/2− 3Z1(1)Z1(2)/2 etc. (152)

Here, due to a supplementary set of relations, all valuesZ±
1 (n) become recursively expressible

as rational functions of

τ
def= DP

1 (0) ≡ −Ai′(0)/Ai(0) = 31/3�( 2
3 )/�(

1
3 ) ≈ 0.729 011 133; (153)

they are all irrational except Z+
1 (1) = 0 (a regularized value, however) and Z+

1 (3) = 1 (table 1
lists all Z±

1 (n) analytically up to n = 3).
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A.2.3. N = 2. The finite-N case where the spectrum is known (Ek = 2k+ 1), of orderµ = 1
(an integer, which makes it a singular case).

The canonical recessive solution relates to a parabolic cylinder function [21,
Chapter 19]; [20, vol 2 Chapter 8]

ψλ(q) ≡ 2(1−λ)/4U(λ/2,
√

2q). (154)

The determinants are given by gamma functions,

D+
2 (λ) =

2−λ/22
√
π

�( 1+λ
4 )

D−
2 (λ) =

2−λ/2√π
�( 3+λ

4 )

�⇒ D2(λ) = 2−λ/2
√

2π

�( 1+λ
2 )

(155)

their functional relation is now drawn directly from equation (50) instead of (130):

e+iπ/4D+
2 (−λ)D−

2 (λ)− e−iπ/4D+
2 (λ)D

−
2 (−λ) ≡ 2ieiπλ/4 (ϕ = π) (156)

and its right-hand side carries a special extra factor because for homogeneous potentials,

β−1(s) ≡ 0 except: β−1(s) ≡ λ(−s + 1
2 ) for N = 2. (157)

For this special value ϕ = π , the functional relation further splits into its real and imaginary
parts at real λ, and thereby reduces to

D+
2 (λ)D

−
2 (−λ) ≡ 2 cos

π

4
(λ− 1) (158)

hence it just amounts to the reflection formula for �(z) (like the cocycle identity, which we do
not write).

Here, the exact quantization condition Ek = 2k + 1 trivially arises by dispatching the
obvious zeros of the right-hand side of equation (158): the positive ones to D−

2 (−λ), the
negative ones to D+

2 (λ).
The anomalous value (157) accounts for special N = 2 trace identities:

Z±
2 (0, λ) ≡ (−λ± 1)/4 (159)

the anomaly vanishes at (and only at) λ = 0, and indeed the general formulae (47), (136) for
D±

N(λ = 0) correctly agree with equation (155) to give

D+
2 (0) =

2
√
π

�( 1
4 )
≈ 0.977 741 067 D−

2 (0) =
√
π

�( 3
4 )
≈ 1.446 409 085

�⇒ D2(0) =
√

2.

(160)

The spectral zeta-functions are

Z2(s) ≡ (1− 2−s)ζ(s) ZP
2 (s) ≡ β(s)

(
def=

∞∑
k=0

(−1)k/(2k + 1)s
)
. (161)

Their sum rules only reproduce the known special values ζ(2n) and β(2n+1) [21, chapter 23],

ZP
2 (1) = π/4 Z2(2) = π2/8 ZP

2 (3) = π3/32 etc. (162)
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